News

ORNL helps identify challenges of extremely heterogeneous architectures

Over the past four decades, performance and energy efficiency in scientific computing technologies improved rapidly to produce lightning-speed computations but are expected to taper off as systems develop characteristics of extreme heterogeneity. Original figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith. Figure extrapolations extended in 2016 by J. Shalf.

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach their power and performance limits. Over time, computer architectures have become much more complex.

A group of computer scientists from Department of Energy national laboratories, including Oak Ridge, Lawrence Berkeley, Sandia, Los Alamos, Argonne, and Brookhaven, convened in early 2018 to consider  how the field can best meet the challenges posed by the phenomenon they label “extreme heterogeneity.” ORNL was represented by the Computing and Computational Sciences Directorate’s Jeffrey Vetter, Catherine Schuman, and Travis Humble.

The group’s report, compiled following the 2018 DOE Office of Advanced Scientific Computing Research Basic Research Needs Workshop on Extreme Heterogeneity, was recently published.

“For nearly two decades, scientists relied on relatively simple HPC architectures with one type of processor, one type of main memory, and one type of interconnect,” Vetter, who chaired the workshop, said.

In short, all the developments that made ever-faster computations possible have upended the field after decades of relative stability. “Future programmers are faced with a computing melting pot,” Humble said. “The diversity of computing choices, many of them unprecedented and novel, yields exciting performance opportunities but also introduces new barriers to adoption.”

https://www.ornl.gov/news/ornl-helps-identify-challenges-extremely-heterogeneou…